
ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Douglas Wilhelm Harder, M.Math. LEL

hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Integer data types

2
Integer data types

Outline

• In this lesson, we will:

– Review main memory

– Consider what we can store with n decimal digits and n bits

– Describe the storage of int

– Determine the problems with storing negative values

– Introduce unsigned types

unsigned char unsigned short unsigned int unsigned long

– Do arithmetic with unsigned integers

– Introduce 2s complement

– Do arithmetic with signed integers

3
Integer data types

What is main memory?

• Main memory is generally volatile memory where any memory
location can be accessed as quickly as any other

– Such memory is called random access

• Main memory consists of billions of bits

– The smallest grouping of bits is a byte consisting of 8 bits

• All of main memory is divided into bytes

– A computer with 4 GiB of main memory

actually has 4 294 967 296 bytes

• This translates into 34 359 738 368 bits

4
Integer data types

What can be stored?

• Suppose I only allow you to store three decimal digits:

– What is the maximum number of values you can store?

• Of course, the answer is 000 through 999,

or one thousand different numbers

– This equals 103

• Suppose I only allow you to store three bits:

– What is the maximum number of values you can store?

• We can store 000, 001, 010, 011, 100, 101, 110 and 111,

or eight different values

– This equals 23

5
Integer data types

What can be stored?

• Thus, given n decimal digits, we can store 10n different values

– These values range from 0 to 10n – 1

– For example, if n = 10,

we can store values between 0 and 9999999999

• Thus, given n bits, we can store 2n different values

– These values range from 0 to 2n – 1

– For example, if n = 10,

we can store values between 0 and 210 – 1 = 1023

– These are 0b0000000000 through 0b1111111111

6
Integer data types

What is int?

• Up to now, we have been using the integer date type int

– Question: how is this stored on the computer?

• Answer:

– Every local variable or parameter of type int occupies 32 bits

– The compiler decides where the 32 bits will be in main memory

• Recall that when stored in binary,

a number is represented by a sequence of 0s and 1s

– Allocate four bytes for any local variable or parameter declared to be
of type int, and then interpret those bits

7
Integer data types

How is an integer stored?

• With 32 bits,

we could store 32 coefficients of a binary number:

b31b30b29b28b27b26 ··· b3b2b1b0

• The bit labeled bk is the coefficient of 2k

– This is why we always start with the zeroeth bit on the right

– If necessary, bits beyond the most significant 1 are zero

8
Integer data types

How is an integer stored?

• For example, in this program, the local variable m is stored as

00000000000000000000000000000101
#include <iostream>

int main();

int main() {

int m{5};

std::cout << m << std::endl;

return 0;

}

– When printed, the 32 bits are interpreted as an integer

9
Integer data types

How is an integer stored?

• Problem: how do we store negative numbers?

– We need to store either a “+” or a “–”

– To do this, we could allocate one bit to store the sign:

00000000000000000000000000000101

– Our convention could be:

• If the sign bit is 0, the number is positive

• Otherwise, the sign bit is 1, indicating the number is negative

• Recall, all these are stored in the computer as voltages in a circuit…

– More in your course on digital circuits and digital computers

Proposed location of the sign bit

10
Integer data types

unsigned int

• Suppose you are counting events in an embedded system

– In such cases, you never need negative numbers

• There is a type for this in C++:

unsigned int

– Note that the compiler interprets this as a single type

• The authors of C could have chosen unsigned_int,

but they chose to add an additional keyword unsigned

• All 32 bits of an unsigned int are used for storing positive integers:

– Values between 0 and 232 – 1,

or 0 and 4294967295

– Think of this as values between 0 and 4 billion

11
Integer data types

Wasted memory?

• Suppose you know you only need values no larger than 100 or 1000

– This requires no more than 10 bits

– Isn’t this potentially wasted memory?

• In an embedded system, this can cause significant issues:

– More memory requires more cost and power

– More power requires larger batteries or reduced battery life

– More memory also produces more heat,

which requires more cooling

12
Integer data types

Other integer types

• Thus, C++ has other types:

unsigned short 2 bytes or 16 bits 0 and 216 – 1 = 65535

unsigned long 8 bytes or 64 bits 0 and 264 – 1 = 18.5 quintillion

• Now, some compilers are…peculiar

– The Microsoft Visual Studio compiler is one such compiler…

unsigned long 4 bytes or 32 bits

– This is the same as unsigned int!

• To get 64 bits, you must use

unsigned long long

13
Integer data types

Other integer types

• There is one final integer datatype:

unsigned char 1 byte or 8 bits 0 and 28 – 1 = 255

– If you ever try to print such an integer,

it will still try to interpret it as a letter

int main() {

for (unsigned char k{32}; k < 127; ++k) {

std::cout << "I am a char: " << k << std::endl;

}

std::cout << "...and not a truck." << std::endl;

}

Output:
I am a char:
I am a char: !
I am a char: "
I am a char: #
I am a char: $
I am a char: %
I am a char: &
I am a char: '
I am a char: (
I am a char:)
I am a char: *
I am a char: +
I am a char: ,
I am a char: -
I am a char: .
I am a char: /
I am a char: 0
I am a char: 1

⋮
I am a char: y
I am a char: z
I am a char: {
I am a char: |
I am a char: }
I am a char: ~
...and not a truck.

14
Integer data types

Other integer types

• Please check your compiler’s specifications, or run this code:
#include <iostream>

int main();

int main() {

std::cout << "char: " << sizeof(char) << std::endl;

std::cout << "short: " << sizeof(short) << std::endl;

std::cout << "int: " << sizeof(int) << std::endl;

std::cout << "long: " << sizeof(long) << std::endl;

std::cout << "long long: " << sizeof(long long) << std::endl;

return 0;

}

Like return, sizeof is an operator that

evaluates to the number of bytes of the type

Output on my compiler:
char: 1
short: 2
int: 4
long: 8
long long: 8

15
Integer data types

Other integer types

• We have now introduced five types that store positive integer values:

unsigned char 0 to 28 – 1 0b11111111

unsigned short 0 to 216 – 1 0b1111111111111111

unsigned int 0 to 232 – 1

unsigned long 0 to 264 – 1

unsigned long long 0 to 264 – 1

16
Integer data types

Unsigned arithmetic

• All arithmetic is performed modulo 2n where n is the number of bits

– The processor just ignores any additional carries:

int main() {

unsigned short m{0b1000001101001101};

unsigned short n{0b0111111000111110};

std::cout << " m = " << m << std::endl;

std::cout << " n = " << n << std::endl;

m += n;

std::cout << "m + n = " << m << std::endl;

return 0;

}

Output:
m = 33613
n = 32318

m + n = 395

17
Integer data types

Arithmetic

• Why did that happen?

1 1 1 1 1 1 1 1 1 1 1

1000001101001101

+ 0111111000111110

10000000110001011

– Thus, we see that 33613 + 32318 = 65931

but we have 1 + 2 + 8 + 128 + 256 = 395

– Note that 395 + 216 = 65931

18
Integer data types

Arithmetic

• The same happens with multiplication:

int main() {

unsigned short m{0b1000001101001101};

unsigned short n{0b0111111000111110};

std::cout << " m = " << m << std::endl;

std::cout << " n = " << n << std::endl;

m *= n;

std::cout << "m * n = " << m << std::endl;

return 0;

} Output:
m = 33613
n = 32318

m * n = 45734

19
Integer data types

Arithmetic

• Why did that happen?
1000001101001101

× 0111111000111110

10000011010011010

100000110100110100

1000001101001101000

10000011010011010000

100000110100110100000

1000001101001101000000000

10000011010011010000000000

100000110100110100000000000

1000001101001101000000000000

10000011010011010000000000000

+ 100000110100110100000000000000

1000000101111111011001010100110

– Thus, we see that 33613 × 32318 = 1086304934

but we have 45734

– Note that 1086304934 = 16575 × 216 + 45734

20
Integer data types

Arithmetic

• If adding, subtracting or multiplying two unsigned integer types and
the result is no longer valid,

we will say that a carry has occurred

• For example,

– Adding two unsigned short and the sum is greater than 216 – 1

– Subtracting a larger unsigned short from a smaller one

– Multiplying two unsigned short

and the product is greater than 216 – 1

21
Integer data types

Back to negative values

• If these are all unsigned types, then

signed char

short

int

long

long long

must be signed types

• How do we deal with negative numbers?

– If the first bit is 1, the number is negative

22
Integer data types

Largest positive value

• If the first bit is zero, it is a positive value:

– Thus, the largest positive value for each of these types are:

signed char 011111111 27 – 1 127

short 0111111111111111 215 – 1 32767

int 0111111111···11111111 231 – 1 2 billion

long 0111111111···11111111 263 – 1 8 quintillion

23
Integer data types

Representing negative numbers

• Why not just using a “1” to indicate a negative number:

– For example, if 5 is assigned to a variable of type short, we have

0000000000000101

– A short –5 would be stored as

1000000000000101

• First problem:

– There is now both 0 and –0:

0000000000000000

1000000000000000

• Second problem:

– It’s actually hard to do arithmetic…

24
Integer data types

2s complement

• The 2s complement notation is actually significantly better:

– To store a negative number,

take the positive value and

• Flip all the bits

• Add one

25
Integer data types

2s complement

• Calculating 2s complement:

– Switch all the bits and add 1:

0000000000000101

↓

1111111111111010

+ 1

1111111111111011

0000000010110000

↓

1111111101001111

+ 1

1111111101010000

26
Integer data types

2s complement

• Calculating 2s complement:

– Switch all the bits and add 1:

0000000000000001

↓

1111111111111110

+ 1

1111111111111111

0111111111111111

↓

1000000000000000

+ 1

1000000000000001

27
Integer data types

2s complement

• A quick and easy way to do this:

– Switch all bits up to, but not including the right-most “1”

0000000010110000

↓

1111111101010000

0011010110000000

↓

1100101010000000

0000000010110000

↓

1111111101010000

28
Integer data types

2s complement

• The same is true for int:

– Flip all bits up to, but not including the right-most “1”

00000000000000000000000010110000

↓

11111111111111111111111101010000

00100000000000000001010110000000

↓

11011111111111111110101010000000

29
Integer data types

2s complement

• Given a negative number, what is its absolute value?

– Just take the 2s complement, again

• For example,

– What is the value of this int?

11111111111111111111111111010110

– It is negative, so its positive value is:

00000000000000000000000000101010

– This number is 2 + 8 + 32 = 42

– Thus, the original number stored –42

30
Integer data types

2s complement

• Question:

– What is the value of:

1000000000000000

– The 2s complement of this number is

1000000000000000

• Consequently, this stores –215

– Thus, we have a slightly different range:

char –27 to 27 – 1

short –215 to 215 – 1

int –231 to 231 – 1

long –263 to 263 – 1

long long –263 to 263 – 1

31
Integer data types

Arithmetic

• How do you add two signed numbers that are in 2s complement

– Add them as if they were positive integers

32
Integer data types

Unsigned arithmetic

• Perform addition as if the stored representations were unsigned

– The processor just ignores any additional carries:

int main() {

short m{-0b0111110010110011}; // 1000001101001101

short n{ 0b0111111000111110};

std::cout << " m = " << m << std::endl;

std::cout << " n = " << n << std::endl;

m += n;

std::cout << "m + n = " << m << std::endl;

return 0;

}

Output:
m = -31923
n = 32318

m + n = 395

33
Integer data types

Arithmetic

• Why did that happen?

1 1 1 1 1 1 1 1 1 1 1

1000001101001101

+ 0111111000111110

10000000110001011

– Thus, we see that –31923 + 32318 = 395

34
Integer data types

Unsigned arithmetic

• Perform addition as if the stored representations were unsigned

– The processor just ignores any additional carries:

int main() {

short m{ 0b0111110010110011};

short n{-0b0111111000111110}; // 1000000111000010

std::cout << " m = " << m << std::endl;

std::cout << " n = " << n << std::endl;

m += n;

std::cout << "m + n = " << m << std::endl;

return 0;

}

Output:
m = 31923
n = -32318

m + n = -395

35
Integer data types

Arithmetic

• Why did that happen?

1 1 1

0111110010110011

+ 1000000111000010

1111111001110101

– The result is negative, and the absolute value of the result is

110001011

– This equals 1 + 2 + 8 + 128 + 256 = 395

– Thus, we see that 31923 + –32318 = –395

36
Integer data types

Unsigned arithmetic

• Perform addition as if the stored representations were unsigned

– The processor just ignores any additional carries:

int main() {

short m{-0b0111110010110011}; // 1000001101001101

short n{ 0b0111110010110011};

std::cout << " m = " << m << std::endl;

std::cout << " n = " << n << std::endl;

m += n;

std::cout << "m + n = " << m << std::endl;

return 0;

}

Output:
m = -31923
n = 31923

m + n = 0

37
Integer data types

Arithmetic

• Why did that happen?

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1000001101001101

+ 0111110010110011

10000000000000000

– Thus, we see that 31923 + –31923 = 0

38
Integer data types

Arithmetic

• If adding or multiplying two signed integer types and the result is no
longer valid,

we will say that an overflow has occurred

• For example,

– Adding two positive short and the sum is greater than 215 – 1

– Adding two negative short and the sum is less than –215

– Adding a positive short to a negative short

can never result in an overflow

– Multiplying two short and

the product is greater than 215 – 1 or less than –215

39
Integer data types

Arithmetic

• You are welcome to examine how fascinating 2s complement is

– For example, try multiplying two integers with opposite signs

– Try multiplying two negative integers

• To perform subtraction, e.g., a - b,

just take the 2s complement of b and add the result to a

40
Integer data types

Summary

• Following this lesson, you now

– You understand

signed char short int long

are stored with 1, 2, 4 and 8 bytes

– Know that each stores a different range of values

• Each has its unsigned equivalents

– Know negative numbers are stored using 2s complement

– Understand that all operations occur as if we ignore any carries
beyond the most significant bit

41
Integer data types

References

[1] Wikipedia:

https://en.wikipedia.org/wiki/Binary_number

https://en.wikipedia.org/wiki/Hexadecimal

https://simple.wikipedia.org/wiki/Hexadecimal_numeral_system

42
Integer data types

Acknowledgements

Akshat Jawne and Lorena Rosati for noting the use of unsigned
integers on Slide 30.

Sami El-Imam for noting had an incorrect sum on Slide 17.

43
Integer data types

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

44
Integer data types

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

