Departrment of Flectrical & ECE 150 Fundamentals of Programming

?mputer Engineering
-

@ UNIVERSITY OF WATERLOO ‘ .

‘s

Prof. Hiren Patel, Ph.D.
Douglas Wilhelm Harder, M.Math. LEL

hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

EEFICOY

®OO

L@‘nm

© 2018 by Douglas Wilhelm Harder and Hiren Patel.
Some rights reserved.

UNIVERSITY OF WATERLO@
FACULLEY OF ENGINEERING
Depagtment of Electrical &

Computer Engineering

-

Outline

e In this lesson, we will:
— Review main memory
— Consider what we can store with n decimal digits and n bits
— Describe the storage of int
— Determine the problems with storing negative values
— Introduce unsigned types
unsigned char unsigned short unsigned int unsigned long
— Do arithmetic with unsigned integers
— Introduce 2s complement
— Do arithmetic with signed integers

What is main memory?

« Main memory is generally volatile memory where any memory
location can be accessed as quickly as any other

— Such memory is called random access

« Main memory consists of billions of bits
— The smallest grouping of bits is a byte consisting of 8 bits
 All of main memory is divided into bytes

— A computer with 4 GiB of main memory
actually has 4 294 967 296 bytes
« This translates into 34 359 738 368 bits

Computer Eng

@ UNIVERSITY OF WATERLO@
Dew‘li'\ent of Electrical & p;
- ineering 1

What can be stored?

» Suppose I only allow you to store three decimal digits:
— What is the maximum number of values you can store?

» Of course, the answer is 000 through 999,
or one thousand different numbers
— This equals 103

* Suppose I only allow you to store three bits:
— What is the maximum number of values you can store?

« We can store 000, 001, 910, 011, 100, 101, 110 and 111,
or eight different values
— This equals 23

Computer Eng ring

UNIVERSITY OF WATERLO@

EEEEEEEEEEEEEEEEE

Dew‘lé'\ent of Electrical & y
-~ ineer| 1

What can be stored?

« Thus, given n decimal digits, we can store 10" different values
— These values range from 0 to 10" - 1
— For example, if n = 10,
we can store values between 0 and 9999999999

« Thus, given n bits, we can store 2" different values
— These values range from 0 to 2" -1
— For example, if n = 10,
we can store values between 0 and 21° — 1 = 1023
— These are ©b0000000000 through ©b1111111111

@ epv'i'\ ectri
" Computer Engineering

Whatis int?

« Up to now, we have been using the integer date type int
— Question: how is this stored on the computer?

 Answer:
— Every local variable or parameter of type int occupies 32 bits
— The compiler decides where the 32 bits will be in main memory

» Recall that when stored in binary,
a number is represented by a sequence of 0s and 1s

— Allocate four bytes for any local variable or parameter declared to be
of type int, and then interpret those bits

4 w w
UNIVERSITY OF WATERLO@ 4 s
FACUI#n EEEEEEEEEEEEE . -
Depastment of Electrical & :
-~ ngineering ‘.

Computer E
¢

How is an integer stored?

« With 32 bits,
we could store 32 coefficients of a binary number:
031030029D56057056 -+ 3,040,

« The bit labeled b, is the coefficient of 2k

— This is why we always start with the zeroeth bit on the right
— If necessary, bits beyond the most significant 1 are zero

¥ w w
UNIVERSITY OF WATERLO@ Y‘ \
FACUI#n EEEEEEEEEEEEE . -
Depastment of Electrical & :
" Computer Engineering .

.

How is an integer stored?

« For example, in this program, the local variable m is stored as

(5J5151515]15151%15 515151515151 %15 151515 1515151515151 %] %15 A%]
#include <iostream>

int main();
int main() {
int m{5};

std::cout << m << std::endl;

return 0;

— When printed, the 32 bits are interpreted as an integer

@ UNIVERSITY OF WATERLO@
Dewﬁ’\ent i 4
W Computer En ring 1

How is an integer stored?

* Problem: how do we store negative numbers?
— We need to store either a “+” or a “-”
— To do this, we could allocate one bit to store the sign:

0000000000V VVLRVVLYVVVVYAV101

Proposed location of the sign bit

— Our convention could be:
« If the sign bit is 0, the number is positive
» Otherwise, the sign bit is 1, indicating the number is negative

« Recall, all these are stored in the computer as voltages in a circuit...
— More in your course on digital circuits and digital computers

@ ew'lé'w ectri
" Computer Engineering

unsigned int

« Suppose you are counting events in an embedded system
— In such cases, you never need negative numbers

« There is a type for this in C++:
unsigned int

— Note that the compiler interprets this as a single type
* The authors of C could have chosen unsigned int,
but they chose to add an additional keyword unsigned

« All 32 bits of an unsigned int are used for storing positive integers:
— Values between 0 and 232 -1,

or 0 and 4294967295
— Think of this as values between 0 and 4 billion

UNIVERSITY OF WATERLO@
FACULLEY OF ENGINEERING
Depagtment of Electrical &

Computer Engineering

-

Wasted memory?

« Suppose you know you only need values no larger than 100 or 1000
— This requires no more than 10 bits
— Isn’t this potentially wasted memory?
» In an embedded system, this can cause significant issues:
— More memory requires more cost and power
— More power requires larger batteries or reduced battery life

— More memory also produces more heat,
which requires more cooling

@ el ent of Electrica
" Computer Engineering

.

Other integer types

e Thus, C++ has other types:
unsigned short 2 bytes or 16 bits 0 and 29— 1 = 65535
unsigned long 8 bytes or 64 bits 0 and 2% — 1 = 18.5 quintillion

« Now, some compilers are...peculiar
— The Microsoft Visual Studio compiler is one such compiler...
unsigned long 4 bytes or 32 bits

— This is the same as unsigned int!
« To get 64 bits, you must use
unsigned long long

UNIVERSITY OF WATERLO®
FACULEY OF ENGINEERING
Depagtment of Electrical &

~ W Computer Engineering

.

Other integer types

Output:
I am a char:
I am a char: !
I am a char: "
» There is one final integer datatype: ; am a cEam :
am a char:
unsigned char 1 byte or 8 bits 0and 28— 1 =255 I am a char: %
I am a char: &
I am a char: '
. . I har:
— If you ever try to print such an integer, pome e ;
it will still try to interpret it as a letter [am a char: *
I am a char: +
I am a char: ,
. . I am a char: -
int maln() { I am a char: .
for (unsigned char k{32}; k < 127; ++k) { I am a char: /
" . I am a char: ©
std::cout << "I am a char: << k << std::endl; 1 am a char: 1
} I am é char: y
I am a char: z
. " " .. . I am a char: {
std::cout << "...and not a truck." << std::endl; I am a char: |
} I am a char: }
I am a char: ~
.and not a truck.

Other integer types

» Please check your compiler’s specifications, or run this code:
#include <iostream>

int main();

int main() {

std::cout
std::cout
std::cout
std::cout
std::cout
return 0;

}

Like return, sizeof is an operator that

<<
<<
<<
<<
<<

"char:
"short:
"int:
"long:

"long long:

<<
<<
<<
<<
<<

sizeof(
sizeof(
sizeof(
sizeof(
sizeof(

Output on my compiler:

evaluates to the number of bytes of the type

char) <<
short) <<
int) <<
long) <<

long long) <<

char:
short:
int:

long:

long long:

std:
std:
std:
std:
std:

1

00O 00 B~ N

:endl;
:endl;
:endl;
:endl;
:endl;

UNIVERSITY OF WATERLO@ "~
FACUI#n EEEEEEEEEEEEE i
2" Departme

" Computer Engineering

.

Other integer types

* We have now introduced five types that store positive integer values:

unsigned char 0Oto28 —1 11111111
unsighed short Oto216 -1 111111111111211111
unsigned int 0to2%2-1

unsigned long 0to264 -1

unsigned long long O0to264-1

@ el ent of Electrica
" Computer Engineering

.

Unsigned arithmetic

« All arithmetic is performed modulo 2" where n is the number of bits
— The processor just ignores any additional carries:
int main() {
unsigned short m{0bl1000001101001101};
unsignhed short n{0b0111111000111110};

std::cout << " m = " << m << std::endl;
std::cout << " n = " << n << std::endl;
m += n;
std::cout << "m + n = " << m << std::endl;
return 0; Output:
} m = 33613
n = 32318

395

=
+
-
Il

UNIVERSITY OF WATERLO@ =
FACUI#n EEEEEEEEEEEEE
Departme

ring

- % Computer En

*

Arithmetic

Why did that happen?
11111 1 11111
1000001101001101
+ 0111111000111110
10000000110001011

— Thus, we see that 33613 + 32318 = 65931
but we have 1 + 2 + 8 + 128 + 256 = 395
— Note that 395 + 216 = 65931

Arithmetic

* The same happens with multiplication:
int main() {
unsigned short m{0bl1000001101001101};
unsigned short n{0b0111111000111110};

std::cout << " m = " << m << std::endl;
std::cout << " n = " << n << std::endl;
m *= n;
std::cout << "m * n =" << m << std::endl;
return 0;
} Output:
m = 33613
n = 32318
k

45734

-
1l

L Computer Engineering

UNIVERSITY OF WATERLO@ "~
FACULEY OF ENGINEERING
Depagtment of Electrical &

.

Arithmetic

Why did that happen?

1000001101001101

x 90111111000111110
10000011010011010
100000110100110100
10000011010011010600
10000011010011010000
100000110100110100000
1000001101001101000000000
10000011010011010000000000
100000110100110100000000000
1000001101001101000000000000
10000011010011010000000000000

+ 100000110100110100000000000000
1000000101111111011001010100110

— Thus, we see that 33613 x 32318 = 1086304934
but we have 45734
— Note that 1086304934 = 16575 x 216 + 45734

UNIVERSITY OF WATERLO@
FACUI#n EEEEEEEEEEEEE
Department

- ring '

Computer En

-

Arithmetic

« If adding, subtracting or multiplying two unsigned integer types and
the result is no longer valid,

we will say that a carry has occurred

« For example,
— Adding two unsigned short and the sum is greater than 216 -1
— Subtracting a larger unsigned short from a smaller one
— Multiplying two unsigned short
and the product is greater than 216 -1

Back to negative values

If these are all unsigned types, then
signed char
short
int
long
long long

must be signed types

How do we deal with negative numbers?
— If the first bit is 1, the number is negative

il

.

4 w w
UNIVERSITY OF WATERLO@ w‘ s
FACUI#n EEEEEEEEEEEEE . -
Depastment of Electrical & :
ineeri .

Computer Eng ring

Largest positive value

 If the first bit is zero, it is a positive value:
— Thus, the largest positive value for each of these types are:

signed char
short

int

long

011111111
0111111111111111
0111111111---11111111
0111111111---11111111

271

215_1
2311
263_1

127

32767

2 billion

8 quintillion

Representing negative numbers

Why not just using a “1” to indicate a negative number:
— For example, if 5 is assigned to a variable of type short, we have
0000000000000 101
— A short -5 would be stored as
1000000000000101
 First problem:
— There is now both 0 and -0:
(15151515 a5 Ls 151515151511 5]1%)
1000000000000000

* Second problem:
— It’s actually hard to do arithmetic...

UNIVERSITY OF WATERLO®
FACULEY OF ENGINEERING
Depagtment of Electrical &

.

2s complement

* The 2s complement notation is actually significantly better:
— To store a negative number,

take the positive value and
« Flip all the bits
« Add one

UNIVERSITY OF WATERLO@
FACUI#n EEEEEEEEEEEEE
Departme

Computer Engineering

-

2s complement

« (Calculating 2s complement:
— Switch all the bits and add 1:
0000000000000101
!
1111111111111010
+ 1
1111111111111011

0000000010110000
!
1111111101001111
+ 1
1111111101010000

UNIVERSITY OF WATERLO@
FACUI#n EEEEEEEEEEEEE
Departme

Computer Engineering

-

2s complement

« (Calculating 2s complement:
— Switch all the bits and add 1:
0000000000000001
!
111111111111111@0
+ 1
1111111111111111

9111111111111111
!
1000000000000000
+ 1
1000000000000001

2s complement

A quick and easy way to do this:
— Switch all bits up to, but not including the right-most “1”
0000000010110000

l
1111111101010000

0011010110000000

l
1100101010000000

0000000010110000

l
111111110101060600

UNIVERSITY OF WATERLO@
FACUI#T‘ EEEEEEEEEEEEE
Departme

W Computer Engineering

-

2s complement

e The same is true for int:
— Flip all bits up to, but not including the right-most “1”
0000010110000

!
11111171711171711171711111111101016060600

00100000000000000001010110000000

!
110111111111111111101010160600000

@ el ent of Electrica
" Computer Engineering

-

2s complement

« Given a negative number, what is its absolute value?
— Just take the 2s complement, again

« For example,
— What is the value of this int?
11111111717111111111111111110101160
— Itis negative, so its positive value is:
00000101010
— This numberis 2 + 8 + 32 = 42
— Thus, the original number stored —42

.

el ent of Electrica
S Computer Engineering

2s complement

Question:
— What is the value of:
1000000000000000
— The 2s complement of this number is
1000000000000000

Consequently, this stores —2%°
— Thus, we have a slightly different range:

char 27 t02" -1
short 2B to 2151
int —231to 231 -1
long 28310263 -1

long long -253t0 263 -1

Y » : 4 - 7 & . 2
%gu:wensnﬁcfwmm | & W . . s Integer da Atypes /

. i 4 31

Arithmetic

 How do you add two signed numbers that are in 2s complement
— Add them as if they were positive integers

UNIVERSITY OF WATERLO@
FACULLY OF ENGINEERING
Depagtment of Electrical &

Computer Engineering

.

Unsigned arithmetic

* Perform addition as if the stored representations were unsigned

— The processor just ignores any additional carries:
int main() {

short m{-0b0111110010110011}; // 1000001101001101
short n{ 0b0111111000111110};

std::cout << " m =" << m << std::endl;
std::cout << " n = " << n << std::endl;
m += n;
std::cout << "m + n = " << m << std::endl;
return 0; Output:
} m = -31923
n = 32318

395

=
+
-
Il

o S E / a
Eﬁ' UNIVERSITY OF WATERLO@ -l , . - - \ '
FACULEY OF ENGINEERIN - i : 0 P Integer d d stypes 4
37 Depagtment of Electrical & - p
{

dat: /

¥33

.

Arithmetic

Why did that happen?
11111 1 11111
1000001101001101
+ 0111111000111110
10000000110001011

— Thus, we see that -31923 + 32318 = 395

UNIVERSITY OF WATERLO@
FACULLY OF ENGINEERING
Depagtment of Electrical &

Computer Engineering

.

Unsigned arithmetic

* Perform addition as if the stored representations were unsigned

— The processor just ignores any additional carries:
int main() {

short m{ 0b0111110010110011};
short n{-0b0111111000111110}; // 1000000111000010

std::cout << " m =" << m << std::endl;
std::cout << " n = " << n << std::endl;
m += n;
std::cout << "m + n = " << m << std::endl;
return 0; Output:
} m = 31923
n = -32318

-395

=
+
-
Il

Computer Engineering

Arithmetic

Why did that happen?
11]
0111110010110011
+ 1000000111000010
1111111001110101

— The result is negative, and the absolute value of the result is
110001011

— Thisequals 1 +2 + 8 + 128 + 256 = 395

— Thus, we see that 31923 + -32318 = —-395

UNIVERSITY OF WATERLO@
FACULLY OF ENGINEERING
Depagtment of Electrical &

Computer Engineering

.

Unsigned arithmetic

* Perform addition as if the stored representations were unsigned

— The processor just ignores any additional carries:
int main() {

short m{-0b0111110010110011}; // 1000001101001101
short n{ 0b0111110010110011};

std::cout << " m =" << m << std::endl;
std::cout << " n = " << n << std::endl;
m += n;
std::cout << "m + n = " << m << std::endl;
return 0; Output:
} m = -31923
n = 31923

o S E / a
Eﬁ' UNIVERSITY OF WATERLO@ -l , . - - \ '
FACULEY OF ENGINEERIN - i : 0 P Integer d d stypes 4
37 Depagtment of Electrical & - p
{

dat: /

y37

.

Arithmetic

Why did that happen?
1111111111111111
1000001101001101
+ 0111110010110011
\@@@@@@@@66@@@00@

— Thus, we see that 31923 + -31923 =0

@ ew'lé'w ectri
" Computer Engineering

Arithmetic

« If adding or multiplying two signed integer types and the result is no
longer valid,

we will say that an overflow has occurred

« For example,
— Adding two positive short and the sum is greater than 2% -1
— Adding two negative short and the sum is less than —21°
— Adding a positive short to a negative short
can never result in an overflow
— Multiplying two short and
the product is greater than 2'° — 1 or less than —21°

@ el ent of Electrica
" Computer Engineering

-

Arithmetic

* You are welcome to examine how fascinating 2s complement is
— For example, try multiplying two integers with opposite signs
— Try multiplying two negative integers

» To perform subtraction, e.g.,a - b,
just take the 2s complement of b and add the result to a

UNIVERSITY OF WATERLO@
FACULLY OF ENGINEERING
Depagtment of Electrical &

Computer Engineering

.

Summary

» Following this lesson, you now
— You understand
signed char short int long
are stored with 1, 2, 4 and 8 bytes
— Know that each stores a different range of values
« Each has its unsigned equivalents
— Know negative numbers are stored using 2s complement

— Understand that all operations occur as if we ignore any carries
beyond the most significant bit

References

[1] Wikipedia:
https://en.wikipedia.org/wiki/Binary_number

https://en.wikipedia.org/wiki/Hexadecimal
https://simple.wikipedia.org/wiki/Hexadecimal_numeral_system

UNIVERSITY OF WATERLO®
FACULEY OF ENGINEERING
Depagtment of Electrical &

“

Acknowledgements

Akshat Jawne and Lorena Rosati for noting the use of unsigned
integers on Slide 30.

Sami El-Imam for noting had an incorrect sum on Slide 17.

UNIVERSITY OF WATERLO@ =
FACULLY OF ENGINEERING

Depagtment of Electrical &
W Computer Engineering

*

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/
for more information.

\4 o
UNIVERSITY OF WATER 0Q 1 \
C : ‘H -

-Cm er

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

